
Non-Parametric Outliers Detection in Multiple Time Series
A Case Study: Power Grid Data Analysis

Yuxun Zhou,∗ Han Zou,∗ Reza Arghandeh,† Weixi Gu,‡ Costas J. Spanos∗
∗Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

†Department of Electrical and Computer Engineering, Florida State University, USA
‡ Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China

Email: {yxzhou, hanzou, spanos}@berkeley.edu, arghandehr@gmail.com, guweixigavin@gmail.com

Abstract

In this study we consider the problem of outlier detection
with multiple co-evolving time series data. To capture both
the temporal dependence and the inter-series relatedness, a
multi-task non-parametric model is proposed, which can be
extended to data with a broader exponential family distribution
by adopting the notion of Bregman divergence. Albeit convex,
the learning problem can be hard as the time series accumu-
late. In this regards, an efficient randomized block coordinate
descent (RBCD) algorithm is proposed. The model and the
algorithm is tested with a real-world application, involving
outlier detection and event analysis in power distribution net-
works with high resolution multi-stream measurements. It is
shown that the incorporation of inter-series relatedness enables
the detection of system level events which would otherwise
be unobservable with traditional methods.

1 Introduction

Data sets collected from a wide variety of research disci-
plines, including computer science, economic, biology and
social science, are in the form of multiple co-evolving time
series. In this work, we consider the task of outlier (or nov-
elty) detection given the aforementioned data type. The core
difficulty, however, is to integrate both the temporal depen-
dence and the interactions among correlated time series for
overall modeling and learning.

General outlier detection is a broad topic that is usually
studied separately in the context of particular domain applica-
tion. From a statistical learning perspective, however, outlier
detection techniques can be categorized according to their
input data types, including but not limited to independent and
identically distributed observations (Aggarwal and Yu 2008;
Zhou et al. 2016), high-dimensional data (Aggarwal and Yu
2001), time series (Gupta et al. 2014), structural data such
as graphs and network (Aggarwal, Zhao, and Philip 2011;
Gupta et al. 2012), etc. A detailed exposition of general
outlier detection techniques is beyond the scope of this pa-
per. The readers are referred to (Aggarwal 2015) and the
references therein for an extensive overview. Depending on
different views of the data generating process, methods for
outlier detection in time series can be summarized into the
following categories:
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Physical model based methods. The underlying assump-
tion is that the observed time series data is generated from
a known dynamic system. As such, the problem is reduced
to comparing the system behavior, estimated with measure-
ments and dynamic equations, to the expected behavior when
the system is in a certain state (normal or abnormal)(Iser-
mann 2005). Recently, model based approaches have also
been used in combination with time series analysis to es-
tablish semi-model based algorithms (Cavraro et al. 2015a;
2015b). This type of approaches rely heavily on correctness
of the dynamical model of the system, as well as some system
analytic tools such as real-time state estimators, parameter
estimation, parity equations, etc. Their limitations are obvi-
ous particularly as recent applications have to deal with high
dimensional and inherently uncertain processes, which sig-
nificantly deteriorates the reliability and accuracy of dynamic
models.

Signal processing based filtering methods. Those ap-
proaches implicitly assume that the “normal” component
of the time series has a sparse representation in the frequency
or wavelet domain. Hence the outlier detection problem is re-
duced to a spectral analysis using low pass or band pass filters,
or is solved by denoising/signal reconstruction using spectral
or wavelet techniques (Mallat 2008). It is worth pointing out
that the signal-processing-based methods have close ties with
the regularized basis function expansion method in statistical
learning. For example, the adaptive wavelet denoising method
known as SURE shrinkage (Donoho and Johnstone 1995) is
essentially the L1 regularized wavelet basis expansion.

Statistical learning based method. The key is to model
the characteristics of the normal state, e.g., the support of
its distribution, its sparse representation, or its smooth com-
ponent, with certain parametric or non-parametric learning
tools. As a large amount of data is made available by the
advancements in sensing and measurement technology, this
approach is receiving increasing attention in both application
and research domains. Ignoring the temporal dependence,
many classic machine learning tools, such as the Kernel Prin-
ciple Component Analysis (kPCA), one class SVM, etc.,
have been widely applied to various fields for outlier detec-
tion. When the temporal dependece is informative (Zhou
and Spanos 2016), miscellaneous time series modeling and
analysis tools, ranging from simple linear regression to com-
plicated multivariate AMRIA models and from parametric
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dynamic Bayeisan networks to non-parametric regression
methods, can be adopted. Readers are referred to (Aggarwal
2015) and the references therein for a comprehensive survey.

However, few works have addressed the outlier detection
problem for multiple correlated time series. In this work, we
propose a non-parametric learning framework, by extend-
ing the classical smoothness (complexity) and fitness opti-
mization. The relatedness among series is captured with an
additional regularization term that imposes the smoothness
of “aggregated pair-wise difference”. We also show that the
framework can be readily extended to time series with mis-
cellaneous types, with the introduction of exponential family
and Bregman divergence. Moreover, an efficient randomized
block coordinate descent (RBCD) algorithm is proposed and
analyzed to alleviate the computational difficulty of the non-
parametric model learning for large data set. To complement
the theoretical analysis, the non-parametric model and the
RBCD algorithm is implemented in a real-world application,
involving outlier detection and event analysis in power distri-
bution networks. The high resolution (millisecond) and high
dimensionality of the multi-stream measurements obtained in
this application posses a challenging outlier detection prob-
lem. It is shown that the proposed framework, which incor-
porates the inter-series relatedness, enables the detection of
system level events which would otherwise be unobservable
with traditional methods. Moreover, the proposed RBCD al-
gorithm scales much better in computational cost compared
to other alternatives.

The rest of the paper is organized as follows. The next
section is devoted to formulating a non-parametric model
of multiple time series. Also, an extension of the model to
exponential family is elaborated to deal with time series with
miscellaneous distributions. In section 3, the RBCD algo-
rithm is established and analyzed to learn the non-parametric
model from data. Finally, we describe the application context
and demonstrate the performance of the proposed method.

2 A Non-parametric Model for Multiple

Time Series

2.1 Notation and Definition

Before proceeding to any technical details, we standardize
our notation by using a matrix XM×T to represent multiple
time series measurements for T time steps and M streams.
Note that for sensor network applications we usually have
M = K × L where K is the number of channels of each
sensor and L the number of sensors installed in the network.
To represent the dependence among streams, a “contextual”
matrix CM×M is designated to store the pair-wise correla-
tions. Also for the ease of discussion, we adopt the notion of
Network of Time Series (NoT):

Definition 1. A Network of Time Series (NoT) is defined as
the triplet G = {X,C, d}, where X ∈ R

M×T is a collection
of M time series of T time steps, C ∈ R

M×M is the contex-
tual matrix and d a dictionary that maps each dimension or
stream of X to an entry in C.

As far as outlier detection is concerned, we adopt the
convention that the abnormality or novelty of an observation

Xit is defined as the deviation between estimated (expected)
value X̂it and real measurement Xit. Hence the problem of
novelty detection reads,

Problem 1. Given G = {X,C, d}, estimate X̂it, ∀i, t. Then

compute l
(
Xit, X̂it

)
as the index of novelty, where l(·, ·) is

a metric function R× R �→ R.

Hence the core of the novelty detection problem is an
estimation problem, for which both temporal dependence and
inter-series correlation should be taken into account.

2.2 Intuition and Problem Formulation

The method we propose borrows ideas from two separate yet
closely related research domains, i.e., time series de-trending
in economics and non-parametric regression in statistical
learning. The learning formulation, proposed in this part
for multiple time series data, is quite intuitive and can be
extended to other data types with the introduction of the
Bregman Divergence. We start by considering the following
decomposition for a single time series xt:

xt = ut + wt ∀t (1)

where the new time series ut represents the trend compo-
nent in the terminology of economics, and the second term
wt contains the so called cyclical component and noises of
the original time series (Enders 2004)1. As such, outlier or
novelty can be defined as elements that deviate significantly
from the general trend. In order to find the trend component,
one can simply optimize over a “fitness” and “smoothness”
trade-off:

min
u0,··· ,uT

T∑
t=1

l(xt, ut) + λΩ(u0, · · · , uT ) (2)

where l(·, ·) and Ω(·) are loss functions imposed on “fit-
ness” and “smoothness”, respectively. The above formulation
is also closely related with the non-parametric regression
method in statistical learning (Fan and Gijbels 1996), in
which a regression function is found by minimizing the L2

loss with second-order derivative regularization. Similarly,
when dealing with time series data containing discrete-time,
continuous-value records, one can substantiate the objective
(2) as follows:

min
u0,··· ,uT

T∑
t=1

(xt − ut)
2 + λ

T∑
t=1

(∇2
tut)

2 (3)

where ∇2
t is the second order difference operator defined by:

∇2
tut =

⎧⎨
⎩
0 t = 1

ut+1 + ut−1 − 2ut 2 ≤ t ≤ T − 1

0 t = T

(4)

Like the second order derivative regularization used in non-
parametric regression, the above aggregated second order

1Hence one can decompose this term into wt = ct + εt for
further analysis
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differences also measures the smoothness of the entire se-
quence, hence is sometimes referred to as total variation
regularization. Detailed analysis and more statistical property
of this term can be found in (Harchaoui and Lévy-Leduc
2010).

By solving the convex quadratic optimization problem
(3), one is able to find the trend component ut. Any data
point that significantly deviate from the trend is an outlier
or novelty point. The weighting parameter λ is called the
smoothness parameter, which should be tuned according to
the application purpose using model selection techniques.
It is worth pointing out that the solution to (3) is called
the Hodrick-Prescott filter in economic time series analysis
(Hodrick and Prescott 1997).

Now we establish our model by extending the above non-
parametric framework to multiple time series that are cor-
related with each other. Notation-wise, given multiple time
series data X ∈ R

M×T , we denote the tth element of the mth

time series by xmt, i.e., xmt is the (m, t)th entry of the data
matrix X . Also, the boldface xm is used to represent the row
vector [xm1, · · · , xmT ]. Similarly, um = [um1, · · · , umT ].
Consider minimizing the following objective:

min
u1,··· ,uM

M∑
m=1

T∑
t=1

(xmt − umt)
2 + λ1

M∑
m=1

T−2∑
t=2

(∇2
tumt

)2

+ λ2

M∑
i=1

M∑
j=1,j �=i

T−1∑
t=2

[∇2
t (uit − Cijujt)

]2
(5)

where λ1 and λ2 are two regularization hyper-parameters,
and C is the standardized co-variance matrix with entries

Cij = cov(xi,xj) (var(xj))
−1 (6)

The intuition for the first two terms in (5) is straightforward:
we simply aggregate the fitness and smoothness objectives
of M times sequences. The motivation for the third term is
the following: Since the linear least square estimator (LLSE)
(Chatterjee and Hadi 2015) of ui given uj reads

E[ui]− cov(ui,uj) (var(uj))
−1

(uj − E[uj ]).

In the case where the two trends are ideally correlated, ui−
cov(ui,uj) (var(uj))

−1
uj should be a constant sequence.

Consider estimating the covariance of U by that of the noisy
X , and relax the harsh “constant” requirement to smoothness,
then with the same usage of second order difference, the third
term imposes the smoothness of the sequence ui − Cijuj ,
which is aggregated over all pairwise combinations.

2.3 Extension to Exponential Family

The previous discussion is focused on time series having con-
tinuous values. Many time sequences, however, may contain
non-negative or categorical values depending on the practical
data generating process. Given that consideration, we extend
the smoothing method to time series with exponential family
marginal distributions. It is helpful to recall some definitions
to begin with:

Definition 2. The Bregman Divergence of any x,y ∈ R
n,

with respect to some arbitrary differentiable strictly convex
function F : Rn → R is defined by

BF (x,y) = F (x)− F (y)− (x− y) · F ′(y) (7)

One can think of the Bregman Divergence as simply the
nonlinear tail of the Taylor expansion of F (x) around y. Note
that the Bregman Divergence is not symmetric, however, it
holds that BF (x,y) = 0 if and only if x = y.
Definition 3. A family of distributions is said to belong to Ex-
ponential Family in canonical form if the probability density
function, or probability mass function for discrete distribu-
tions, can be written as

fX(x|θ) = h(x) exp {θ · T (x)−A(θ)} (8)

where the parameter vector θ is called the natural parameter
of the distribution, and T (x) the sufficient statistic. We also
denote a(θ) � A′(θ) for future use.

When Bregman Divergence is used in measuring the fit-
ness of observed data to a parametrized exponential family
distribution, the following property shows that Bregman di-
vergence is directly related with log-likelihood:
Theorem 1. Define a dual function associated with the ex-
ponential family

F (a(θ)) � θ · a(θ)−A(θ) (9)

then F (μ) is strictly convex in μ = a(θ). In addition,

BF (T (x)||a(θ)) ∝ −logP (T (x)|θ) ∝ A(θ)− T (x) · θ
(10)

Proof. Treating θ as a function of μ, and taking derivative of
F (a(θ)) with respect to μ, we get

∇μF (μ) = f(μ) = θ +
∂θ

∂μ
μ− ∂θ

∂μ
μ = θ (11)

which is in effect the inverse of a(θ), i.e.,∇μF (μ) = θ =
a−1(μ). From the strict convexity of A(θ), it is guaranteed
that this inverse always exists. Moreover, since a(θ) has
a positive definite Jacobian, its inverse a−1(μ) also has a
positive definite jacobian. Hence F (μ) is strictly convex. In
real analysis, F (μ) is also called the dual convex function of
A(θ). Using this function in the Bregman divergence for x
and a(θ), we get

BF (T (x)||a(θ))
= F (T (x))− F ((θ))− (T (x)− a(θ)) · ∇F (a(θ))

= F (T (x))− a(θ) +A(θ)− (T (x)− a(θ)) · θ
= F (T (x)) +A(θ)− T (x) · θ

On the other hand, since the log likelihood of the exponential
family is just

logP (T (x)|θ) = log h(x) + T (x) · θ −A(θ)

Hence we can directly relate negative log likelihood and
Bregman divergence by

BF (T (x)||a(θ)) = − logP (T (x)|θ)+log h(x)+F (T (x))
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Now consider arbitrary time series {x1m, x2m, ..., xTm}
in the data set, whose marginal distribution (for each xmt)
belongs to some exponential family, a natural extension of
the “fitness” loss is the Bregman divergence. Together with
the above discussion, the first term in the proposed multiple
time series smoothing formulation (5) could be generalized
as follows

l(Θ) =
M∑

m=1

T∑
t=1

BF (T (xmt)||a(θmt))

∝
M∑

m=1

T∑
t=1

− logP (T (xmt)|θmt)

∝
M∑

m=1

T∑
t=1

{A(θmt)− T (xmt)θmt}

(12)

where we use the matrix Θ ∈ R
M×T to denote all natural

parameters associated with the elements of the multiple times
series. Since natural parameters uniquely characterize the
exponential family distribution, in particular its moments
through cumulant function, it appears reasonable to adopt
a similar regularization as in (5) for natural parameters of
each entry, to impose temporal smoothness on each time
sequence, as well as their inter-correlations. As such, the
overall learning objective of general multiple time series
smoothing reads

min
θ1,··· ,θM

J (Θ) =
M∑

m=1

T∑
t=1

{A(θmt)− T (xmt)θmt}

+ λ1

M∑
m=1

T−2∑
t=2

(∇2
t θmt

)2

+ λ2

M∑
i=1

M∑
j=1,j �=i

T−1∑
t=2

[∇2
t (θit − Cijθjt)

]2
(13)

which is still convex since the second order derivative of each
component of the first term is a′(θmt) = Var(T (xmt)) > 0.

3 A Fast Random Block Coordinate Descent

(RBCD) Algorithm

So far the problem of multiple time series smoothing
has been reduced to solving a convex optimization prob-
lem (13) with smoothness penalty λ1 and λ2 as hyper-
parameters. Generic methods, such as those based on first
or second order gradient (Boyd and Vandenberghe 2004;
Bertsekas et al. 2003), may be applied but may not be a good
choice - the dimension of the decision variables Θ equals to
the number of elements of all time series, hence the calcula-
tion or even the storage of full first/second order gradient is
quite inefficient. Moreover, batch gradient methods suffers
from the choice of step size and numerical instability when
dealing with high-dimensional problems.

In this section, we propose a simple yet efficient algorithm
that can be implemented in just a few lines of code. The key
idea is the archetype of an universal solution methodology
to algorithmic optimization: solving a complex or large scale

problem by reducing it to a sequence of simpler optimization
problems. More specifically for (13), it appears that fixing
all the other decision variables except θt, (which are the
decision variables corresponding to all observations of the
multiple time series at time t), the sub-problem has low di-
mension and the solution can be updated easily with much
less time and memory. We provide a convergence analysis of
the proposed RBCD algorithm, and demonstrate its relation
to stochastic gradient descent (SGD). In addition, RBCD
is readily amendable for parallel computation, and empiri-
cally outperforms the state-of-the-art alternating direction
method of multipliers (ADMM) that was recently proposed
for total variation regularized problems (Boyd et al. 2011;
Gonçalves, Von Zuben, and Banerjee 2016; Zhou, Kang, and
Spanos 2017).

The RBCD start with an initial guess of the decision vari-
ables Θ0. In each step, it consists of (1) picking up an index
ik from {1, · · · , T}, (2) evaluating the gradient of a block
of variables, i.e., [∇J (Θ)]ik in the current implementation,
followed by (3) updating the ithk column of Θ. Note that we
have adopted the “subset indexing” convention: here and
throughout, [∇J (Θ)]i is used to denote the ith column of
∇J (Θ). The indicator vector vi has dimension T × 1 and
all its elements, except the ith entry, equal to zero. The mul-
tiplication with vTi serves to match the dimension of block
gradient to the dimension of all decision variables. Also it
is worth pointing out that in each step ik could be chosen
randomly, as in the current implementation, for the purpose
of parallel computing. Alternatively ik can be selected in
a deterministic fashion, e.g., using a cyclic schedule. The
convergence analysis in later part of this section holds for
both cases.

Algorithm 1 Random Block Coordinate Descent (RBCD)
Algorithm

Initialize Θ0 = [θ0
1, ...,θ

0
T ] ∈ R

M×T , and let k ← 0
while k < itermax do

Sample ik ∈ {1, · · · , T} from a uniform distribution
Θk+1 ← Θk + αk[∇J (Θ)]ikv

T
ik

if ||Θk+1 −Θk−T+2|| < threshold then
Return Θ

end if
k ← k + 1

end while

Now we calculate the gradients that are required by the
algorithm. To begin with, the three terms of the objective
function (13) are denoted by l(Θ), Ω1(Θ) and Ω1(Θ), re-
spectively, i.e., the objective function is rewritten as

J (Θ) = l(Θ) + λ1Ω1(Θ) + λ2Ω1(Θ) (14)
for clarity. When all elements of Θ except the ith column θi
are fixed, we can easily compute

∂l(Θ)

∂θi
= − (a(θi)− T (xi)) (15)

where the function operation should be interpreted
component-wise, i.e.,

a(θi) � [a(θ1i), · · · , a(θMi)]
T
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The gradient computation of the second term is also straight-
forward,

∂Ω1(Θ)

∂θi
= φ(B)θi (16)

where φ(B) = B2 − 4B + 6 − 4B−1 + B−2 and B is the
time delay operator. The gradient of the third term is more
involved, with some algebra we get

∂Ω2(Θ)

∂θi
= φ(B)θi·⎡

⎣(M − 3)I + 2C + diag

⎛
⎝ M∑

j=1

C2
1j , · · · ,

M∑
j=1

C2
Mj

⎞
⎠
⎤
⎦
(17)

Now we provide the convergence analysis of the algorithm.
Theorem 2. The gradient function ∇J (Θ) is block-wise
Lipschitz continuous. Let Li be the Lipschitz constant of
block i, then

Li ≥ (2 + 12λ2 + 2λ2(M − 3)) + 2‖C‖2+

min{
M∑
j=1

C2
1j , · · · ,

M∑
j=1

C2
Mj} � L̄min ∀i

Li ≤ (2 + 12λ2 + 2λ2(M − 3)) + 2‖C‖F+

max{
M∑
j=1

C2
1j , · · · ,

M∑
j=1

C2
Mj} � L̄max ∀i

(18)

The RBCD algorithm with constant step size αk = L̄ gener-
ates a sequence {Θk}k≥0 that achieves

E[J (Θk)]−J ∗ ≤
(
1− L̄min

T L̄max

)k

(J (Θ0)−J ∗) (19)

The proof is long and technical hence is saved to the supple-
mentary. Interestingly, the proposed RBCD method is closely
related to the Stochastic Gradient Descent (SGD) method
which has received much attention for large scale machine
learning application. SGD tries to minimize a smooth func-
tion f by taking a negative step along an estimate g of the
gradient ∇f(x). Under regular conventions, it is assumed
that g is unbiased, i.e., E[g] = ∇f(x), where the expectation
is taken over the random variables that are used to obtain g at
current value of x. The proposed RBCD method, somewhat
surprisingly, can be viewed as a special case of the above
SGD. In fact, if we take g = T [∇J (Θ)]ikv

T
ik
, then with the

random sampling of the coordinate index, we have

E[g] =
1

T

T∑
i=1

T [∇J (Θ)]iv
T
i = ∇J (Θ) (20)

The difference is that RBCD algorithm can guarantee an im-
provement of the objective function at each step. However,
both the SGD and the RBCD proposed here avoid the process
the entire data set at each step, hence they are both scalable
for large size problems. Next we test the proposed model and
algorithm in a real-world application, demonstrating the ben-
efit of including inter-series relatedness and the effectiveness
of the RBCD algorithm.

Figure 1: Installed μ-Pnet monitoring system in a distribution
network.

4 Case Study: Event Detection in Power

Grid using Advanced Sensing Technology

This section is devoted to the verification of the proposed
non-parametric model and the RBCD algorithms. A cross-
validation based procedures for the choice of model hyper-
parameters is also included. Overall, we will demonstrate,
through a real-world application to power system data, that
the proposed multiple time series analysis tools enables the
discovery of network level outliers that may otherwise be
ignored by traditional single time series analysis methods.
More case setup details and comparison to other multiple
time series methods can be found in supplementary mate-
rial. The RBCD is very easy to implement, and we provide a
Python version one the authors’ web-page.

4.1 Data Collection from a Power Grid

The data-set used in this section was collected from a
power distribution system equipped in Alameda, CA, with
advanced smart meters called phasor measurement units
(PMUs) (Von Meier et al. 2014) (Figure 1). Each channel
of a particular PMU generates a time series by measuring
one type of system state at a certain node. In this experiment,
five PMUs are installed at different locations in a distribu-
tion subsystem, providing measurements of voltage/current
magnitude and phase angle at a high sampling rate. Since all
PMUs are connected with one another through the underlying
power distribution network, the measurements also demon-
strate non-negligible inter-series correlations, in particular for
times series generated from the same branch of the network.

All measurements from the PMU netowrk are GPS time
stamped to provide time-synchronized observability. The
smart meters used in this project provide three-phase voltage
and current magnitude and phase angle with 20 seconds time
resolution. Measurement data is collected during the period
June 02 to July 11, 2015. Each sample is a 60 dimensional
vector containing 12 channels per μPMU measuring three
phase voltage/current magnitude/angle. Thus for the mutiple
time series model, the observed measurement X is 60× T ,
and the empirical correlation matrix C has dimension 60×60.
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Figure 2: Testing RMSE vs. hyperparameters

4.2 Choice of Hyper-Parameters and the
Computational Cost

The proposed non-parametric method has two hyperparam-
eters λ1 and λ2, which are weights for temporal and inter-
series smoothness, respectively. These hyperparameters de-
termines the complexity of the learned model, and are critical
for the performance of the two method. In the sequel we dis-
cuss the choice of hyperparameters within a cross validation
(CV) framework. First of all, a clean chunk of the multiple
time series data2 is randomly divided into training and test-
ing sets. Let B ∈ R

M×T be the indicator matrix having the
same dimension as the data matrix X , i.e., Bij = 1 if Xij

belongs to the training set, and Bij = 0 if Xij is assigned to
the testing set. Each entry of B follows a Bernoulli distribu-
tion Ber(0.7), i.e., we use approximately 70% of the data for
training and leave 30% for testing.

Fortunately, the proposed methods are readily amendable
to handle missing values (the data points held out for testing):
One can simply ignore the loss terms of the testing data
points in the first part of (5), or more compactly, use X ◦B to
replace the data matrix. To evaluate the CV performance, we
use the root mean square error (RMSE) on the testing data set.
Figure 2 shows the impact of the two hyperparameters, λ1

and λ2, on the testing RMSE of the nonparameteric method.
The 2D surface reaches a minimum when λ1 = 39 and
λ2 = 10, demonstrating a trade-off between training fitness
and smoothness (complexity). Based on that, we set the two
weights accordingly for the nonparametric method.

We also compare the computational cost of RBCD for
the non-parametric method and our major competitor, Facets
(Cai et al. 2015), which uses EM algorithm for updating con-
textual HMMs (hence is denoted by EM-CHMM). In addi-
tion, the classical mARIMA and signal-series non-parametric
model are included into the comparison. To further justify
the benefit of RBCD, we include the popular Alternating
Direction Method of Multipliers (ADMM) algorithm (Boyd
et al. 2011), for the alternative optimization of (5). All nu-
merical experiments are performed on a workstation having
dual Xeon5687 CPUs and 72GB memory. The results shown
in the sequel are average values of 20 repetitions.

Figure 3 illustrates the required computational time as a
function of increasing size of training sequences. Among all

2The data used for CV contains very few outliers and is different
from the chunk of data used in the next section for validation.
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methods that incorporate inter-series relatedness, RBCD-NP
is the most efficient: For large training size it significantly
reduces the running time by at least 42.1% compared to the
runner-up ADMM-NP. Although single-NP takes the least
time usage, its detection performance is poor and it misses
all network level outliers, as will be seen later. It appears that
the computational costs of EM-CHMM and mARIMA scale
slightly super-linearly and are both much more expensive
than that of the non-parametric method.

4.3 Outlier Detection Results

Next we test the proposed methods as a tool for outlier de-
tection. A 120 minute measurement sequence is taken out,
which exhibits abnormalities due to sensor or communication
failure, and novel events like voltage disturbance due to load
changes. For comparison purposes, this data set is also in-
spected by a power system expert to manually mark outliers
and events. We compute an index of novelty by comparing
the inferred values X̂it with the observed values of Xit with
the absolute distance.

Figure 4 shows the detection results of the proposed non-
parametric method. Note that although data from all 60 series
are used, only three correlated voltage streams are shown here
for clearer presentation. The blue curve in each subplot is the
raw data with outliers, and the green curve is the estimated
values with the non-parametric method. It is seen that the
estimated values are smoothed version of the original data and
the measurement noise has been canceled out. For each time
series, outliers/novelties are marked with vertical lines when
the absolute difference between raw value and estimated
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Figure 6: Outlier Detection: spline method

value is larger than 0.73, which is 2σ calculated from all
estimation biases.

It appears that our method successfully captured almost all
outliers caused by sensor/communication problems or load
changes. Those outliers are marked in magenta in each of the
panel. More interestingly, due to the incorporation of inter-
series dependence, the estimated values for each time series
do not always follow its own trend, but are also influenced by
other correlated time series. This feature enables the detection
of “network level” outliers and novelties, i.e., those data
points that significantly violate the correlation structure of the
system under measurement. This type of outliers are marked
in cyan in each panel of Figure 4. Intuitively, they correspond
to power grid events such as three phase imbalance, real and
reactive power switching, etc.

To further justify the proposed method and the benefits
of incorporating inter-series dependence, we compare them
with three alternatives: the Facets with contextual HMMs
(CHMM) in Figure 5, the single stream smoothing spline
method (Gu 2013) in Figure 6, and the multivariate auto-
regressive integrated moving average (mARIMA) model
(Box et al. 2015) in Figure 7. Since the detection problem is
inherently imbalanced, we report the precision and recall of
each method in Table 1, by comparing their detection results
with expert labels. More specifically, precision is the fraction
of detected events or outliers that are consistent with expert
labeling, while recall is fraction of the events or outliers
labeled by expert that are successfully retrieved.

At a first glance, the estimated values (green curves) are
quite similar to those based on the non-parametric method. In
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Figure 7: Outlier Detection: m-ARIMA

Table 1: Detection Comparison: Precision and Recall

Method Simple outliers network-level events
Precison Recall Precison Recall

Propsoed 96.7 91.7 94.8 91.1
CHMM 93.3 90.9 92.5 88.7
s-Spline 84.4 92.8 31.8 19.2
mArima 81.0 85.6 62.4 57.7

general, CHMM also successfully detects both single stream
and network level outliers. However compared to the non-
parametric method, CHMM seems to emphasize inter-series
relatedness more, while the temporal trend of each series
is weighted less. Moreover, the computational cost of our
method is much less and scalable than CHMM. Apparently,
the single task spline method fails to detect outliers that vio-
late the correlation structure, although in general it provide
well-fitted trend for each sequence. The detection results
of mARIMA are interesting: due to the non-stationary na-
ture (even after taking difference) of the measurement data,
ARIMA model does not provide a good estimation in general.
It is observed that some of the single stream outliers were
missed, although the method is able to detect several network
level outliers.

5 Conclusion and Discussion

To incorporate both temporal dependence and inter-series re-
latedness for outlier detection, we propose a non-parametric
learning method for multiple series, which can be viewed as
a multitask version (Pan and Yang 2010) of the classical non-
parametric regression method. It is shown that the learning
formulation can be extended to handle data with exponential
family distribution, and an efficient RBCD algorithm can be
use to solve the convex optimization problem. The model and
the algorithm is tested with a real-world application, involv-
ing outlier detection and event analysis in power distribution
networks with high resolution multi-stream measurements.
It is shown that the incorporation of inter-series relatedness
enables the detection of system level events which would
otherwise be unobservable with traditional methods.

The proposed RBCD algorithm bears some interesting
features. It resembles SGD in that the expectation of each
update is equal to the gradient, while unlike SGD the RBCD
ensures a decrease of the objective function in each iteration.
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Arguably, recent machine learning literature focuses more on
gradient descent based method but block coordinate descent
seems to be ignored. This work advocates the use of BCD
for a broader class of ML optimization problems.
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